博客
关于我
Zookeeper工作原理及各角色的任务分配
阅读量:141 次
发布时间:2019-02-27

本文共 886 字,大约阅读时间需要 2 分钟。

一、Zookeeper的工作原理

Zookeeper 是一个开源的分布式协调服务框架,主要用于管理大规模集群中的状态和配置信息。其工作原理基于Paxos协议,确保在分布式环境下实现高可靠性和一致性。

  • 数据存储:每个节点服务器在其内存中保留数据副本,确保集群中任意节点都能快速访问最新数据。

  • Leader选举:在集群启动时,通过Paxos协议从所有实例中选举出一个稳定的Leader,负责处理集群的数据更新和操作请求。

  • 事务处理:Leader节点负责调度和处理所有事务请求,确保集群内部的事务处理具有顺序性和一致性。

  • 多数可用:Zookeeper的更新操作只有当大多数节点成功修改数据时才认为操作完成,确保数据一致性。


  • 二、Zookeeper的角色分配与任务描述

    在Zookeeper集群中,各个节点根据其角色分配不同的任务,共同确保集群的高效运转。

    1. Leader角色

    • 事务请求调度:作为集群的事务处理核心,Leader负责唯一地调度和处理客户端的事务请求,确保集群内部事务的顺序性。
    • 服务调度:Leader还负责调度集群内部各服务的运行,协调集群层面的资源分配。

    2. Follower角色

    • 非事务请求处理:Follower节点负责处理客户端发来的非事务请求,并将事务请求转发给Leader节点。
    • 投票参与:Follower节点参与事务请求的Proposal缓存队列投票机制,确保集群内的数据一致性。
    • Leader选举参与:Follower节点也参与Leader选举投票,协助选举出稳定的集群领导者。

    3. Observer角色

    • 非事务处理能力提升:在Zookeeper 3.0版本之后,Observer角色被引入,通过不影响集群事务处理能力的方式提升集群的非事务处理能力。
    • 请求转发:Observer节点同样负责处理客户端的非事务请求,并将事务请求转发给Leader节点。
    • 无投票参与:Observer节点不参与任何形式的投票,避免对集群的稳定性产生影响。

    通过上述角色分配,Zookeeper实现了在分布式环境下的高效协调和数据管理,确保集群的高可用性和一致性。

    转载地址:http://fggf.baihongyu.com/

    你可能感兴趣的文章
    NTP及Chrony时间同步服务设置
    查看>>
    NTP服务器
    查看>>
    NTP配置
    查看>>
    NUC1077 Humble Numbers【数学计算+打表】
    查看>>
    NuGet Gallery 开源项目快速入门指南
    查看>>
    NuGet(微软.NET开发平台的软件包管理工具)在VisualStudio中的安装的使用
    查看>>
    nuget.org 无法加载源 https://api.nuget.org/v3/index.json 的服务索引
    查看>>
    Nuget~管理自己的包包
    查看>>
    NuGet学习笔记001---了解使用NuGet给net快速获取引用
    查看>>
    nullnullHuge Pages
    查看>>
    NullPointerException Cannot invoke setSkipOutputConversion(boolean) because functionToInvoke is null
    查看>>
    null可以转换成任意非基本类型(int/short/long/float/boolean/byte/double/char以外)
    查看>>
    Number Sequence(kmp算法)
    查看>>
    Numix Core 开源项目教程
    查看>>
    numpy
    查看>>
    Numpy 入门
    查看>>
    NumPy 库详细介绍-ChatGPT4o作答
    查看>>
    NumPy 或 Pandas:将数组类型保持为整数,同时具有 NaN 值
    查看>>
    numpy 或 scipy 有哪些可能的计算可以返回 NaN?
    查看>>
    numpy 数组 dtype 在 Windows 10 64 位机器中默认为 int32
    查看>>